Part I - INTRODUCTION

DATE
TOPIC
MATERIALS
16/9
Natural Language Processing:
Problems and perspectives
- Slides (I.1)
- [FT] - Chapter 1, Section 2.1
- Papers [Abney, 2011, Aslin, 2017]
17/9
Introduction/Recall to/of probability calculus - Slides (I.2)
- [FT] - Sections 2.2, 2.2.1
- [LGS] - Sections from 1.1 to 1.2.5
- Bayesian Models [Chater et. al 2010]
17/9
N-grams Language Models - Lesson Notes
- [FT] - Sections 2.2.2, 2.2.3
- [SLP3] - Chapter 3
17/9
18/9
23/9
Introduction to Deep Learning.
Transformers and Large Language Models (LLMs).
- Slide (I.3).
- [FT] - Chapter 3
- [Naveed et al. 2024]
- RNNs Enc/Dec + Attention [1], [2]
- Transformer Explainer
23/9 The evaluation of NLP applications - Slides (I.4)
- [FT] - Chapter 5
- [OHCL] Chapter 22
- EVALITA WebSite (PoS 2007)
- SemEval


REFERENCES

[FT]
Tamburini, F. (2022). Neural Models for the Automatic Processing of Italian, Bologna: Pàtron.

[SLP3]
Jurafsky and J.H. Martin (in press). Speech and Language Processing, Prentice Hall. (3rd edition DRAFT)

[LGS]
B. Krenn and C. Samuelsson (1997).The Linguist's Guide to Statistics.

[OHCL]
Mitkow R. (ed.) (2003). The Oxford Handbook of Computational Linguistics.