DATE
|
TOPIC
|
MATERIALS
|
16/9
|
Natural Language Processing: Problems and perspectives |
- Slides (I.1) - [FT] - Chapter 1, Section 2.1 - Papers [Abney, 2011, Aslin, 2017] |
17/9
|
Introduction/Recall to/of probability calculus |
- Slides (I.2) - [FT] - Sections 2.2, 2.2.1 - [LGS] - Sections from 1.1 to 1.2.5 - Bayesian Models [Chater et. al 2010] |
17/9
|
N-grams Language Models |
- Lesson Notes - [FT] - Sections 2.2.2, 2.2.3 - [SLP3] - Chapter 3 |
17/9 18/9 23/9 |
Introduction to Deep Learning. Transformers and Large Language Models (LLMs). |
- Slide (I.3). - [FT] - Chapter 3 - [Naveed et al. 2024] - RNNs Enc/Dec + Attention [1], [2] - Transformer Explainer |
23/9 | The evaluation of NLP applications | - Slides (I.4) - [FT] - Chapter 5 - [OHCL] Chapter 22 - EVALITA WebSite (PoS 2007) - SemEval |
REFERENCES
[FT]