
Of mice and terms: clustering algorithms
on ambiguous terms in folksonomies

Nicola Raffaele
Di Matteo

Silvio Peroni Fabio Tamburini Fabio Vitali

Department of
Computer Science

Department of
Computer Science

Department of Linguistics
and Oriental Studies

Department of
Computer Science

University of Bologna University of Bologna University of Bologna University of Bologna
Bologna (Italy) Bologna (Italy) Bologna (Italy) Bologna (Italy)

dimatteo@cs.unibo.it speroni@cs.unibo.it fabio.tamburini@unibo.it fabio@cs.unibo.it

ABSTRACT
Developed using the principles of the Model-View-Controller
architectural pattern, FolksEngine is a parametric search engine
for folksonomies that allows us to test arbitrary search
improvement algorithms by specifying them in three phases:
expansion, where the original query is converted in multiple ones
according to semantic rules associated to the query terms, search,
executing the queries on a standard folksonomy search engine
such as Delicious, and ranking, sorting the results according
to rules. In this paper we extend our previous studies using
FolksEngine and offer a new query expansion algorithms based
on Natural Language Processing techniques, and a new view for
the results based on Semantic Web technologies. We also describe
some tests of the algorithms developed, in order to obtain a clear
and effective evaluation of them.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing –
Text analysis.
H.3.1 [Information Storage And Retrieval]: Information Search
and Retrieval – Clustering.

General Terms
Algorithms.

Keywords
Delicious, FolksEngine, Folksonomy, INFOMAP-NLP, RDF,
Web Search Engine, Wordnet.

1. INTRODUCTION
In the last years, much work on document search has been
exploring new approaches for search based on the exploitation of
semantic data. Usually, this kind of search is performed through
content analysis, that is obviously imprecise, or by retrieving and
analysing annotations added to documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

These annotations could be added by classification professionals,
that categorize and describe the documents by using rich and well-
organized thesauri, and yet hard to master, or by the collective
action of a non-professional audience that describes documents
in a free-from-constraint approach, in particular without the need
to impose a controlled and unambiguous vocabularies, i.e. by
defining folksonomies.

Obviously, folksonomies do not generate a consistent structure
of concepts associated to the document content: in fact, they
introduce well-known problems such as terms’ ambiguity or
synonymity, that make it hard to offer a fully shareable and
synthetic view of the content of the documents.

Literature exists that offers a posteriori semantic structuring of
the terms that are actually used in folksonomies, and contextualize
and explain the terms that are used there in. But it is clear that is
not possible to impose a precise semantic to them exactly because
of their main advantage: they allow the collective making of
complex vocabularies exactly by ignoring the issues of ambiguity
and synonymity.

An alternative path to imposing firm and definite semantics to
terms used in folksonomies is to associate them to well-defined
terms in a predefined ontology, i.e to cluster folksonomic tags
around concepts placed in a clear and well-defined semantic
structure. Providing such association in an explicit way is a task
as wide as ultimately futile, given the number of terms being used
and the variety of meanings associated to them.

On the other hand, the identification of clusters of folksonomic
tags, that refer to a particular concept, implies the creation of a
distance value between folksonomic terms and the specification
of a cluster as the set of terms that fall within a certain distance
from the query. This can be performed with a number of different
algorithms, many of which are well studied in literature.

Starting from the basis introduced in [5], in this paper we present
the architecture of an application prototype, FolksEngine, that
we use to develop and test in an integrated manner all sorts of
different clustering algorithms in order to verify their different
effectiveness. To do that we have created a flexible architecture,
that allows to separate the commonalities and the differences
of each algorithm we are testing. In particular, we introduce
a three-step process, expansion, search and ranking, to which
all algorithms must comply with, placing all differences in the
individual expansion and ranking steps.

The architecture also made to test our own contribution to
such algorithms. Here we also report on the implementation of
algorithms bringing to folksonomies a few Natural Language
Processing (NLP) techniques, thereby applying well-studied

844

algorithms originally created for ample document collections to
the restricted domain defined by folksonomies.

We finally introduce a particular view for visualizing results,
completely based on Semantic Web technologies, such as RDF
[8] and OWL [12]: each result returned by the engine is described
using entities concerning a particular ontology for folksonomies,
expressly developed to address this issue using some Content
Ontology Design Patterns [9].

2. EXISTING APPROACHES FOR TERM
CLUSTERING
Various approaches can be pursued in order to improve the user's
query by enriching it with sophisticated meanings or associations
to get better results from search engines.

The first approach uses lexical resources (such as WordNet) and
its ontological organization in order to extract concepts related to
the query terms. WordNet semantic relations – such as synonymy,
implicitly expressed in the synsets definition, hyponymy (type-
subtype relation) and meronimy (part-whole relation) – can be
successfully used to add to the original query further concepts,
directly related to those used by the user. The list of concepts
connected to the original query can be expanded also considering
measures of semantic relatedness between the lexical elements in
WordNet [3].

Another query expansion approach starts from a radically different
view: instead of using an existing lexical resource, all the query
terms are expanded by using statistical and machine learning
techniques on huge quantities of text resources. Words and multi-
word expressions can be compared by means of distributional
similarity measures and then clustered using various techniques.
Examples and explanations of some of these techniques – based
on latent semantic analysis and n-gram extraction from large text
corpora – can be found in [7] [10] [11] [15] [14].

Though they do not strictly concern query expansion algorithms,
some other tools frameworks and techniques have been developed
to try to enrich in some way a particular tag set given as input.
For example, the FoLksonomy Ontology enRichmenttool (FLOR)
[2]performs an automatic semantic enrichment of folksonomies,
without any user contribution, using a three steps procedure
that guarantees a lexical analysis, a thesaurus-based semantic
expansion and a final semantic enrichment through ontologies.

Our goal in this work, for what concerns the query expansion
issue, is to explore in particular the theoretical proposal made in
[14] using its implementation, the package INFOMAP-NLP1, as
an NLP method to expand the user’s queries.

3. FOLKSENGINE
In this section we introduce FolksEngine2 the search engine
framework we developed to exploit clustering methods for
folksonomic tags. The basic principles of our framework depend
on both design and theoretical aspects.

First of all, the flexibility of the infrastructure represents the
main feature we want to guarantee. We did not want to focus
on a specific clustering algorithm but we wanted to develop
a framework that allowed us to test a number of clustering
algorithms for folksonomies in very different ways, in order to
understand their efficacy in each particular context considered.

FolksEngine allows adding easily new algorithms simply by
extending the appropriate internal framework structures, without
modifying the application core. Moreover, it is be able to expand
the current knowledge base with new folksonomic repositories
and ontological thesaurus, in order to have new and up-to-date
data. Clearly, this knowledge base enrichment guarantees, every
time we extend the knowledge base, a much more accurate
analysis and evaluation of each tested algorithm.

Each algorithm need to be organized around the following three
steps:

• the user’s query is expanded into multiple keywords;

• the new keyword set is given as input to a general
folksonomic search engine, generating multiple result
sets;

• the result sets are collated, filtered and sorted according
to a particular ranking function.

3.1 Clustering algorithms
The first clustering algorithm we developed is based on the
semantic expansion of the user's query, according to one of the
semantic relations available in the WorldNet thesaurus, trying to
avoid ambiguity among terms in some way. A possible simplest
solution to solve the term ambiguity could be to specify the query
as a “keytag:keyword” pairs, in which the first term represents a
sort of category for the latter, avoiding completely the common
space-separated keywords form. Through this mechanism, we
expand the query t:w as t:w, t w, t’ w, t” w, … , t n w, where t’ … t
n are terms semantically related – through synonymy, hyponymy,
hyperonymy, semantic distance, etc. – to t.

Another mechanism we developed in our framework concerns
the use of lexical resources based on a formal ontology: not just
WordNet, but also FrameNet3, PropBank4, and so on. Using these
kind of resources, we can navigate the lexical relations among
terms coded into the ontology, finding concepts somehow related
to the user’s query.

Some of the basic relations cited, such as synonymy and
hyponymy, have already been experimented in [5]. Clearly, more
complex metrics – for instance, based on semantic relatedness
between words and concepts (e.g., the lowest super-ordinate
in taxonomic relation or overlapping measures between word
definitions) – can be profitably used to identify concepts that are
related to the terms of the original query.

Hand-made lexical resources can be very useful for these tasks,
but, unfortunately, the availability of such resources is very
limited: they are often restricted to the most common languages,
mainly English, and often their coverage can not be adequate
to guarantee a complete and useful term expansion of the user's
query. A lot of terms occurring inside user’s queries can contain
ambiguities between words and proper names (e.g. bush/Bush,
Paris Hilton/Hilton hotels, etc.). The problem here is that methods
heavily based on such resources cannot handle this kinds of
ambiguities.

Yet, finding words that are related together by some linguistic
relation or that exhibit similar distributional behaviour is a field
of research in NLP that has been actively explored in the last few
years.

–––––––––––––––––––––––––
1 http://infomap-nlp.sourceforge.net/.
2 http://folksengine.web.cs.unibo.it/.
3 http://framenet.icsi.berkeley.edu/.
4 http://verbs.colorado.edu/~mpalmer/projects/ace.html.

845

A viable solution is the use of large amount of real text as statistical
evidence of linguistic phenomena: starting form a large amount
of text corpora, such as the British National Corpus for English5

or the CORIS/CODIS for Italian6, it is possible to apply statistical
and machine learning techniques in order to identify the words that
exhibit a similar distributional behaviour of the user’s terms.

One of these approaches, largely used by the NLP and information
retrieval communities, is grounded on the Latent Semantic
Analysis, firstly introduced by Deerwester, et al. [4]. The
occurrence of each word is represented as a vector of words co-
occurring with it in the same context. All vectors are thus collected
in a [word x word in context] matrix A. This is a huge matrix,
because each original vector spans through the entire lexicon of
the target language. Applying a singular value decomposition
technique to A we can map each vector into a subspace, called the
WORD-SPACE, with reduced dimensionality k, keeping most of
the original distributional information.

 (1)

Each word is then mapped into a k-dimensional vector in order
to efficiently compare it to other word-vectors to find similarities
using, for example, the cosine distance refSim – where w1*w2 is
the euclidean scalar product and ||w|| is the norm of the vector w.
The closer the vectors in the k-dimensional space are, the more
the distributional behaviours of the two words are similar. So,
appropriate clustering methods can identify sets of similar words.

Starting from this standard technique, Widdows [13] studied
the interesting properties of this WORD-SPACE, adding the
possibility of using logical connectives inside user queries.
The notion of distributional similarity between words has been
extended with the negation, in terms of vector orthogonality, and
disjunction, as linear sum of subspaces. Since the same logical
operators on vectors were used by Birkhoff and von Neumann in
the 1930s to describe the logic of a quantum mechanical system,
these logical operators are called quantum connectives and the
system as a whole is called a quantum logic.

This quantum connectives are implemented inside the INFOMAP-
NLP package, allowing us to write very specific queries. For
example the query “rock NOT band” allows for the retrieval
of the word most similar to rock when it refers to “a lump or
mass of hard consolidated mineral matter” and not to “a genre of
popular music”. We have extensively used these methods inside
our framework for what concerns the query expansion phase. The
results will be presented in Section 4.

Moreover, elaborating these methods as proposed, for example,
by Widdows and Dorow [15], we can build small graphs for each
target word, showing the most similar words in a structured way
and showing also the different senses the target word can have in
real texts.

3.2 The implementation of FolksEngine
The core of FolksEngine is composed of a set of cooperating
classes that take care of different aspects of the search and retrieval
in folksonomies.

Each extension, implementing a specific clustering algorithm, is
obtained by extending the framework core classes. Such user-

defined classes contain only the specific sub-algorithm, while the
framework deals with the relationships among classes and with
their interactions. The core classes of the framework are organized
following the Model - View – Controller pattern.

Figure 1. An alternative workflow for retrieving documents
through folknsonomic queries.

As shown in Figure 1, our framework describes a classical
information retrieval flow with a particular variant: the
introduction of the expansion of the user’s query. Algorithms
to expand queries – e.g., using semantic relations, clustered
similarity, etc. – are defined by the programmer by extending a
core class. Both the application flow and the semantic distance
algorithm (used for ranking the search results) are controlled by
particular classes, easily extendible depending on the particular
needs.

Our framework also provides facilities for using WordNet in any
part of the algorithms. The entire Wordnet thesaurus database
is integrated using WordNet Sql Builder2, and it is accessible
directly from the framework. This is especially useful for the query
expansion.

Obviously, it is possible to improve the framework, in order to
access other dictionaries, by extending the class concerning the
database handling of classes and term relations.

We have created a search engine accessing directly Delicious. The
HTML pages returned by Delicious are cleaned and transformed
into a well-formed XML document, and it is then possible to use
XPath to retrieve the data sought.

The framework controller listens for requests from the user and
dispatches them to the framework model. Once retrieved, the
results are returned to the controller and, finally, they are shown by
the viewer. Thus the typical process execution is “read the query,
expand it, execute the search, rank the result”.

3.3 RDF view for query results
The results returned by the first FolksEngine version were
written in a simple HTML document. Though they are very
comprehensible by humans, who watch them through a browser
and give easily a meaning to each string they read, the real
semantics for those data are completely hidden behind the
document structure. For this reason, the particular format used
here is not the best way to return meaningful data for machines,
that are not able to rightly interpret the implicit semantics
of the result document. Trying to describe more precise and
machine-processable data, in the past years the World Wide Web

–––––––––––––––––––––––––
5 http://www.natcorp.ox.ac.uk/.
6 http://sciling.dslo.unibo.it/accesso_coris_eng.html.

846

Consortium developed a set of specifications with the intent to
allow machines to easily understand data and the relations among
them in a Web context.

Figure 2. The general process of returning results performed
by the FolksEngine. Depending on the kind of client that
queried it, two different output are returned: an RDF
document, easily readable for machines, or an XHTML
+RDFa one, readable for human being too.

Within the set of these specifications, RDF [8] represents the
standard models for data interchange on the Web:it is based on
statements, each of them identified by the triple subject, property
and object. Taking into consideration that, in order to return more
machine-processable results, we developed a new particular view
for our engine based on RDF. All the RDF triples involved in the
answer refer to a particular OWL ontology7 developed to address
this issue.

This ontology takes inspiration from an interesting article by
Thomas Gruber [6] in which are addressed some design issues for
the development of ontologies describing folksonomies. Taking
into consideration that work, the Ontology Design Patterns [9]
for the design, we are able to describe semantically all the results
returned by the FolksEngine.

Moreover, using the same view, we can offer two different
kind of outputs, depending on the client that queries the engine,
as shown in Figure 2. After retrieving results from (possibly)
different folksonomic search engines and after re-ordering them,
an RDF document is produced as output. Because of its machine-
processability, it can be interpreted easily by general agents and it
can also be shown by browser as a standard XHTML document.

Obviously, the default output of this view is an RDF document,
made using the ARC2 library8, that is easily readable by machines.
To obtain a human-readable output too, we need to apply a
specific XSLT document, specified through a process instruction,
to the RDF output document. It is important to note the latter
transformation, that is performed automatically by browsers,
results in a well formed XHTML document in which we embed
all the semantic assertions by using RDFa [1].

4. EVALUATION
In order to understand the quality of the evaluated outcomes of
the algorithms developed, we need to describe how Delicious
performs a search.

Delicious uses “AND” as the default operator. This means that if
we search documents using “fruit apple” as query, we will receive
all the documents that have both these tags or that contain both
the words in the text content. Note that, as default, Delicious looks
for documents not only via tags but it also tries to find the query
terms in the document text content.

Since looking for documents analysing their text content in respect
to the query could be misleading, Delicious gives us the possibility
to restrict the search to tags only, just putting the flag “tag:” before
the terms you specify in the query. Querying “tag:apple”, we ask
Delicious to look for all the documents that have “apple” as tag,
and not in the content.

Even if the use of such flag could help users to make more
precise queries, in many cases we can encounter some problems
concerning the term ambiguity. For example, through “tag:apple”
we can find both documents concerning the fruit and the computer
company. A possible way to solve this situation is to build the
query by adding a tag, for example “tag:fruit”. Of course, we will
not retrieve documents with similar tags such as “tree” or “food”.

Obviously, to address this last issue an an automatic way, we
developed four different query expansion algorithms, following
the principle “keytag:keyword” introduced in Section 3:

• using Wordnet, we expand the keytagwith the
hypernyms, hyponyms and synonyms – the query
“fruit:apple”, using the hypernyms for “fruit”, is
expanded into “fruit apple”, “reproductive structure
apple”, “product apple”, “production apple”, “aftermath
apple” and “consequence apple”;

• through INFOMAP-NLP, we get the words that are
in relation with the keytag according to the distances
defined within the algorithm – the query “fruit:apple”
is expanded in “fruit apple”, “vegetable apple”, “herbs
apple”, “peas apple”, “vegetables apple”, “beans apple”,
“bread apple”, “potatoes apple”, “meat apple”, “butter
apple”, “rice apple”, “cheese apple”, “seeds apple”,
“cooked apple”, “chicken apple”.

The rank calculation for these algorithms is, at the moment, rather
simple: taking into consideration the set Tof all the terms obtained
after the expansion, we sum 10 to each result every time a term
matches with a tag in T.

Starting from these assumptions, we made seven queries, always
using ambiguous terms. We performed them using six different
algorithms: the four ones previously explained and the one
developed by Delicious, trying to query it using “tag:keyword”
and “tag:keytagtag:keyword” respectively. All the results are
summarized in Table 1.

As shown, all the Wordnet-based algorithms are not as good as
the simpler “tag:keytagtag:keyword” returned by Delicious. On
the other hand, the INFOMAP algorithms increase the average
precision of results. Even if these are preliminary tests only, they
tend to show the effective power of the INFOMAP-NLP package.
Moreover, note that, even if it is not shown in Table 1, the recall of
the INFOMAP algorithm is better than the Delicious (with keytag)
one, because the former returns much more results for the query.–––––––––––––––––––––––––

7 http://www.essepuntato.it/2009/07/folksonomy.
8 http://arc.semsol.org/.

847

Table 1. The results for all the tests performed. Taking
the first 20 results returned by the FolksEngine for
each algorithm, the precision for each test is calculated
dividing the relevant results by 20. The “Precision” in the
last column refers to the average precision measure of
each query (a = “fruit:apple”, b = “animal:mouse”, c =
“animal:computer”, d = “bible:genesis”, e = “band:genesis”, f
= “organization:police”, g = “band:police”).

Algorithm a b c d e f g Precision

Delicious
(without
keytag)

0 0 20 4 6 19 0 0.278

Delicious
(using
keytag)

18 16 20 20 20 15 7 0.828

Wordnet
hypernyms

0 15 17 19 8 19 0 0.557

Wordnet
hyponyms

6 17 20 20 10 15 3 0.65

Wordnet
synonyms

20 19 18 20 18 11 0 0.757

INFOMAP 20 17 18 20 20 16 7 0.842

5. CONCLUSIONS AND FUTURE WORKS
In this paper we have introduced a flexible PHP framework for
folksonomy-based document search.

Our ongoing studies concern two different issues. First of all, we
are carrying on the development of a systematic approach for the
evaluation of different clustering algorithms, in order to prove
in a concrete way the quality of the search results returned by
each algorithm. Moreover, we are implementing and testing other
(more sophisticated) algorithms for query expansions and result
ranking.

An alternative methodology for driving the terms’ expansion that
we plan to implement in our system relies on a dependency-parsed
corpus [7]. Triples (word, syntactic relation, word) are extracted
and various statistical and stochastic measures are computed on
them in order to define a similarity measure between two words.
Again, a clustering algorithm relying on such similarity measures
can group words exhibiting similar distributional and syntactic
behaviour.

All the experiments presented in this paper that require the use
of large corpora were based on the BNC, a 100-million-word
written and spoken corpus of British English developed at the
beginning of the 90s. The use of real text, instead of hand-
made lexical resources can capture also information from real life
events or situations, often sources of ambiguous queries, allowing
a certain kind of efficient disambiguation possibilities. In order
to obtain reliable results from these operations we need a huge
amount of recent real texts. That is why the next experiments we
aim to perform will be based on the ukWaC, a 2 billion-word
corpus of British English built recently – and available at http://
wacky.sslmit.unibo.it/ – by collecting documents from the Web.

As outlined before, the research in this field of NLP community
is very active, and a lot of alternative methods and techniques can
be devised and successfully applied to the query expansion task.

Apart from these NLP aspects, we are improving the ontology
model for describing folksonomies and we are exploring the
possibilities to associate the results returned by the engine with

other similar data, for example by linking them to the Linked Data
graph.

REFERENCES
[1] Adida, B., Birbeck, M., McCarron, S., Pemberton, S.

(2008). RDFa in XHTML: Syntax and processing. W3C
Recommendation. World Wide Web Consortium. http://
www.w3.org/TR/rdfa-syntax/.

[2] Angeletou, S. (2008). Semantic Enrichment of Folksonomy
Tagspaces. International Semantic Web Conference
ISWC'08, Doctoral Consortium. Karlsruhe, Germany.

[3] Budanitsky, A., Hirst, G. (2006). Evaluating WordNet-
based Measures of Lexical Semantic Relatedness.
Computational Linguistics, 32 (1), 13-47.

[4] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., Harshman, R. (1990). Indexing by Latent Semantic
Analysis. Journal of the American Society for Information
Science, 41, 391-407.

[5] Di Matteo, N. R., Peroni, S., Tamburini, F., Vitali, F.
(2009). A parametric architecture for tags clustering in
folksonomic search engines. It will be presented during the
9th International Conference on Intelligent System Design
and Applications (ISDA’09). Pisa, Italy.

[6] Gruber, T. (2007). Ontology of Folksonomy: A Mash-up
of Apples and Oranges. International Journal on Semantic
Web & Information Systems. http://tomgruber.org/writing/
ontology-of-folksonomy.html.

[7] Lin, D. (1998). Automatic retrieval and clustering of similar
words. In Proceedings of the 17th international conference
on Computational linguistics, 768 – 774. Montreal, Canada.

[8] Manola, F., Miller, E. (2004). RDF Primer. W3C
Recommendation. World Wide Web Consortium. http://
www.w3.org/TR/rdf-primer/.

[9] Presutti, V., Gangemi, A. (2008). Content Ontology Design
Patterns as practical building blocks for web ontologies. In
Proceedings of ER2008. Barcelona, Spain.

[10] Purandare, A., Pedersen, T. (2004). SenseClusters - Finding
Clusters that Represent Word Senses. In Proceedings of the
HLT-NAACL 2004: Demonstration Papers, 26-29. Boston,
MA, USA.

[11] Sinha, R., Mihalcea, R. (2007). Unsupervised Graph-
based Word Sense Disambiguation Using Measures of
Word Semantic Similarity. In Proceedings of the IEEE
International Conference on Semantic Computing (ICSC
2007), 363-369. Irvine, CA, USA.

[12] W3C OWL Working Group (2009). OWL 2 Web Ontology
Language Document Overview. W3C Working Draft.
http://www.w3.org/TR/owl2-overview/.

[13] Widdows, D. (2003). Orthogonal negation in vector spaces
for modelling word-meanings and document retrieval. In
Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics, 136 – 143. Sapporo, Japan.

[14] Widdows, D. (2004). Geometry and Meaning. CSLI
Publication.

[15] Widdows, D., Dorow, B. (2002). A Graph Model for
Unsupervised Lexical Acquisition. In Proceedings of
the 19th International Conference on Computational
Linguistics, 1093-1099. Taipei, Taiwan.

848

