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Abstract

This paper presents a numerical algorithm which realizes a translation, rotation and scale invariant
transform for single object gray scale images. This kind of algorithm is applicable to all those
applications which need to deal with shape information, independent of the orientation, distance
and position of an object. The algorithm we present takes its mathematical foundation from the
log-polar transform [2]. These analytical results cannot be mapped directly into an algorithm: they
involve generalized integrals that are hard to compute and the numerical implementation has to
take account of discretization error which may propagate and lead to meaningless results. The aim
of this paper is to present an algorithm which overcomes these problems.

1 Introduction

Many applications depend on object recognition features. Robotic applications need to recognize
mechanical parts in order to perform some automatic actions on them. Other typical industrial
applications for this kind of algorithm are those used to catalogue objects. In medicine, it is
important to be able to recognize cells which have characteristics dependent on their shape. In
X-Ray slides, echography and tomography opaque zones having a specific shape are symptoms for
particular diseases. Other applications might be military (such as target discovery from satellite
or aerial pictures and target driven weapons), astronomical (galaxy cataloguing) and so on. When
an electronic system digitizes an object the distance, the position and orientation of the desired
object in the picture are not generally known a priori. Our approach to this problem is to split
the recognition process into two phases: phase one is a translation, rotation and scale invariant
transform to eliminate these extraneous factors from the image, thereby leaving an easier job for
the real pattern recognition algorithm (phase two).

What are the essential features of a transform algorithm for the first phase of this process?

e It has to maintain shape information. The result must be shape dependent.

e It has to be robust: additive noise, up to a reasonable level, as a result of digitization errors,
must be masked out.
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e 1t has to be flexible: most of the recognition applications today are tailorea to speciiic prob-
lems, whereas this algorithm can be used for a wide range of recognition problems.

e Computation should be performed quickly: speed is a critical factor for some applications.
To be quick, in this context, does not necessarily mean that the algorithm should have a
low sequential computational complexity, but rather that the algorithm can run on several
processor concurrently with no data exchange (except the initial feed, and the result output).
By increasing the number of processors, the complexity of the algorithm’s parallel elements
can be reduced.

This paper is organized as follows: section 3 presents the analytical foundations; section 4 describes
the structure and section 5 the implementation of the DATA algorithm. Section 6 presents some
test results and the computational complexity of the algorithm is discussed in section 7. The
appendix contains proofs of all the mathematical assertions.

2 Related works

Bi-dimensional shape recognition algorithms and methodologies are well documented in the bibli-
ography. Much research has been carried out on this topic and has used many different approaches.
Xu and Yang [6] used multidimensional orthogonal polynomials, He and Kundu [4], Sekita, Kurita
and Otsu [5] used autoregressive models. Both these approaches are not that well suited for gray
scale images: in fact these methods take as input the boundary lines of objects.

Other methods are based on the numerical Mellin transform of data. Zwicke and Kiss [8] used a
Mellin transform to recognize the shapes of ships from radar signals, Altmann and Reitbock [1]
used a scale and translation invariant transform. A complete recognition system is presented in
Wechsler and Zimmerman [7]. Its pattern matching algorithm is an associative memory, and the
pre-processing transform provides rotation and scale invariancy.

Not one of the above algorithms achieves a full translation, rotation and scale invariant transform.
The critical point in exploiting such a feature is that the algorithm needs more than one transform
step with a consequent propagation of computational errors.

3 Analytical foundations

The analytical foundation of this algorithm was first introduced by Casasent Psaltis [2]. Fourier
analysis on data allows us to divide a signal up into a discrete or continuous sum of sinusoidal
functions. The Fourier Transform (FT) of a function f(z), takes the form:
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The Fourier transform is commonly used in image processing to filter an input image by decreasing
or nulling some frequencies. In fact, a FT can be seen as a function which assigns to each frequency
the amplitude and the phase of that frequency ‘wave’ that is part of the analyzed signal. Clearly,
shifting a signal affects only the phase of the transformed result and not the magnitude: if we
consider the exponential form of the complex function F, F(u) = |F(u)|e’#™), we can outline that
a translation does not affect the FT magnitude: |FT{f(z —a)}(u)| = |F(u)e’*?| = |F(u)|.
This property is also true for the Fourier bi-dimensional transform of images. The magnitude is
also invariant for translation in this case.
The spectrum of a FT also has the following properties.



e It has 1ts maximum at the origin O = (U,0) and this value 1s proportional to the total energy
of the image.

e It maintains rotation: by transforming an image which has been rotated through an angle «,
an image spectrum is obtained which is also rotated through the same angle a about O.

e [t inverts scale operations: by transforming a scaled picture by a factor «, the image obtained
is scaled by a factor é

So, FT magnitude is translation invariant and rotation and scale operations are mapped into
equivalent operations centered about the origin of the frequency domain.

By converting rectangular (cartesian) co-ordinates into polar co-ordinates, rotations about O are
clearly mapped into translation operations on the # axis, while scale deformations from O are
mapped to scale operations of the same ratio but on the radial direction only.

Mono-directional scale on the interval [0,4o00[ can be mapped by a translation operation onto
the interval | — oo, +oo[ by applying a Mellin transform, that uses logarithmic scaling (log az =
log a + log x).

So by first using FT, translation operations can finally be masked out, by converting the result
into polar co-ordinates and by log-scaling the radial co-ordinate, scale and rotation can also be
interpreted as translations, which are then masked out by a second FT.

Several problems affect the method when implemented as an algorithm:

e the input of the second FT on the domain | — oo, +00[Xx[0, 27[ is not a limited data set, i.e.
non null points can be found at any distance from the origin. This input function is real, non
negative, and reaches its global maximum at £ = —oo. As a result, all the integrals involved
in the second FT are generalized integrals (hard to approximate with numerical methods).

e there has to be a trade off between discretization steps of data, accuracy and complexity.
To clarify this concept, let us examine a poor implementation: a brute force approach to
the problem carried out using Fast Fourier Transforms (FFTs), bitmap to bitmap polar co-
ordinates and log scaling map conversion, leads to meaningless results because most of the
output image depends on the values of a very few pixels all concentrated around the first
FT origin. FFTs generate a uniform square grid of Fourier spectrum samples, whereas this
application needs a very high density of samples near to the origin and fewer samples far from
it.

4 The DATA algorithm

As in FFT theory, our algorithm takes as input an N x N square grid of values. However whereas
the FFT computes the Fourier transform values on a different N x N uniform mesh, as we said,
the DATA algorithm needs to value the F'T on a greater number of points near to the origin and a
fewer number of points far from it. In order to compute the FT on any point of the cartesian real
plane, the input samples set W = {wp x}h=0,...N k=0,..,n is extended to a function f: R x R = R
using the following definition:
Wh,k if % <z < L'(]’i]_'—l)
d 2k < 2n(k+1)
fw(z,y) = e

0 otherwise



Hence,
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A very good level of accuracy can be achieved by performing the first FT, rect-to-polar conversion
and log-scaling in a single step. In this way there is no additional loss of accuracy due to multiple
discretizations. The result of these transformation can be computed directly onto (p, 8) using the
following formula:
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This technique, however, is not sufficient to build a real algorithm which implements the transform
we need. The output of this first numerical step is defined on a non-finite stripe of height 27. The
FT row computations involve generalized integrals (as seen above). To achieve greater accuracy
and better performance, the analytical algorithm needs to be changed; a different kind of scale
invariant transform has to be used. Another drawback in using or modifying the original method
for scale invariancy is that no meaningful FT information on discrete data can be obtained beyond
a square having the same size of the input grid. In fact, the value of the F'T at each of these points,
represents the amplitude and phase of a component having more than one oscillation per pixel.
The numerical algorithm needs to ‘cut’ a finite interval of the stripe in a scale independent way;
this chunk needs to contain the essential information of the shape and should not intersect the
frequency overflow area.

All the rows of the LP transform output (on a discrete N x N grid of real positive input data)
can be proven (see Appendix A) to be definitely monotonic as p — —oo. More precisely: V6 €
[0,27] LPw(p,6) is monotonically decreasing on p, Vp € [—oo, log (%) [ Consequently even the

mean on # (see note!): LPy (p), is monotonically decreasing in the same interval. Defining (see

Appendix A): — (log (g))
N LPy (-o0)

and calling Z = maxycrs Ew, where IS is the set of all the images to be transformed, then clearly,

—
—
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(1

Even if sometimes it is not reasonable to process all the possible input images to compute the
correct value for =, it can be approximated experimentally by pre-processing a set of test images.
In practice, by testing the algorithm on different images we have found that the cut parameter can
be fixed as the maximum = on all images in their larger size. =, in fact, depends only on image
size and contrast.

Once a size independent point on the stripe has been found it can be used as the origin and thereby
the point from which to gather the shape information for further processing (see fig. 1).

Another parameter of the algorithm is the length of the selected radius interval. The shorter this
interval is, the higher the scalability, i.e. similar objects of very different size can be recognized,
however, by using a lower range of frequencies, the whole process takes into account only the most

YLPw (p) is the mean value of the LP function computed on a finite set of points. For the purpose of this
paragraph it can be considered either as a continuous or discrete mean.
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Figure 1:

general characteristics of the object’s shape and small details are lost. On the other hand, by using
long intervals it is also possible to take account of small details in the recognition process, and
yet this leads to a lower degree of scalability. I.e. by scaling down the object, the small details
may become smaller than the input sampling grid (see fig. 1). In this case, the algorithm tries to
compute a FT outside a space having the same dimension of the input domain. As we pointed out
before, this is not a well-defined operation.

5 Implementation of the DATA algorithm

The implementation of the DATA algorithm consists of three parts (see fig. 2):
e the starting point search on the main maximum of the FT in order to cut the unlimited stripe,
e FT, polar conversion and logarithmic scaling,
e FFT on image columns.

The first part uses the results obtained in appendix A to compute the starting point for logarithmic
scaling. To achieve this, we have built a search algorithm that examines the module of the image’s
F'T; for each step it computes the mean of the FT values on a circular region (see fig 3).

Starting with pg = log %, it searches for the value of py that gives a mean, on the circular region,
equal to Ex F(0,0), where Z is a real value between 0 and 1, as defined in the previous paragraph,
and F(0,0) is the value of the FT at the origin (i.e. a value proportional to the image’s total
energy). Modifying py according to the mean, the search algorithm can find the correct py, that
will then be used to compute the logarithmic scaling.



DATATransform(in,out)
in input image
out transformed image
begin
/* Logarithmic scaling starting point search */
po = log %
repeat
mean = 0
for each 0 from 0 to 7 (N steps) o )
mean = mean + Zi\:ol E;\:Olin[w,y]e_jﬁepo(m cos 0+ysin6)
po = S(mean)
until mean = = x F(0,0)

/* Fourier transform, Polar conversion and L ogarithmic scaling %/
for each p from 0 to N —1
for each 6 from 0 to © (N steps)

LP[o) = Y0 ZN_lin[w,y}e_jzw"e"(”)_”O (z cos 6+y sinf)
z=0 y=0

/* Fast Fourier Transform on LP columns %/
for each p from 0 to N —1
for each 0 from 0 to © (N steps)
outlf, pl = (FT{LP,})[6]

end

Figure 2: The DATA-algorithm.

To improve the performance we use an hybrid search algorithm, that starts with a linear search,
when pj is far from the correct value, and then switches to a dichotomic search, as it approaches
the final value, resulting in a high precision approximation. This task is synthesized in the function
S, that updates py according to the search type.

The second part of the DATA-algorithm computes the FT, polar and logarithmic scaling in one
step, using as the starting point of logarithmic scaling the py value computed previously. The
function ¢ rescales the [0, N] interval onto an [0, G] interval, where G is the length of the chunk as
seen in fig 1.

Another device that we have used to improve the performance of this phase, and the previous one,
is to compute the transform for § from 0 to 7 only; since the FT exhibits conjugate symmetry,
given that |F'(u,v)| = |F(—u,—v)|, we can compute the LP transform for just half of total image,
and rearrange the results to complete the entire transform.

The first two phases give a translation independent transformed image, and convert scale and
rotation on the original image into translations.

A final FFT realizes the rotation and scale invariance for the original image.

6 Experimental results

We have used two sets of test images. The first set consists of five artificial images containing three
squares in general random positions (which means that they have different translation, rotation
and scale factors), a circle and a triangle. In fig 4 you can see these images and their corresponding
transformed images.

To show the transformed images in all their detail, we have used, in all the figures shown in this
paragraph, the classical logarithmic enhancement that reinforces the secondary maxima of FTs.
We can see immediately, by looking at figure 4, that although the square images are very different,



Figure 3: This is a schematic view of the FT main maximum and the circular path for

the initial point search.

H Square 1 ‘ Square 2 ‘ Square 3 ‘ Circle ‘

Square 2 3.31 * * *
Square 3 2.64 3.16 * *
Circle 83.23 83.56 83.28 *
Triangle 135.46 134.73 134.61 | 123.87

Table 1: This table shows the distance between the artificial test images

in position rotation and scale, their transformed images are very similar and no obvious differences
are observed, whereas the other objects’ images have very different transforms.

In order to show the effectiveness of the procedure we have valued the euclidean distance between
the transformed images. Table 1 shows that in this test different shapes are, on average, 37 times
further than similar ones (the worst case is about 25).

In the second test set the algorithm processed four digitized gray scale images from two galaxies.
Three of them are images of galaxy NGC1365 digitized in three different positions, orientation and
scale, the fourth is an image of NGC3938. Again, we have included all the source and transformed
images and a table containing the euclidean distances between the resulting outputs (see fig. 5 and
table 2).

Gray scale images are managed as an effective way as binary images are. The distance between
different instances of the same object due to discretization and computational errors are negligible
when compared to the distance between two different objects.

In this section we have shown empirically that the DATA-algorithm can be seen as a discrete
counterpart of the analytical transform, underlining its ability to extract shape information from
images, removing all geometrical transform such as translation rotation and scaling.

7 Computational complexity

As we showed in the previous paragraphs we have introduced some changes in the mathematical
transform process in order to overcome discretization problems. The FFT algorithm computes the
FT on a square grid with a complexity bound of O(N?log N); these results can be achieved by
using the variable separability, and by re-using common partial results. By computing the F'T on a
log-polar grid (as we do in the LP function) variables do not appear to be separable and there is no
common partial result, then the scalar performance cannot be further improved. Even if O(N*) is



Figure 4: Artificial test images and their transforms.

a polynomial bound complexity, it can be quite difficult to handle high resolution picture or moving
frames.

All the considerations above assume that the size of the input grid equals that of the output grid.
In a common application even if the input is a high resolution picture, a lower size transformed
image is sufficient for the recognition process. Where N is the input picture size and M the output
picture size the complexity clearly reduces to O(N?M?)

The algorithm can also be parallelized to improve the real performance. Given that the LP trans-
form computations for different output points do not share any of the partial results, this algorithm
can easily be parallelized in a very effective way. In fact a speed up factor close to the theoretical
maximum can be achieved by distributing the output point computations among the existing pro-
cessors. The algorithm has no synchronization bottle necks except for the initial broadcast of the
original image and the final collect of results.

8 Concluding remarks

In this paper we presented the DATA-algorithm, a translation, rotation and scale invariant trans-
form. The result that we are obtaining on the test data set are very encouraging. Our future plans
include an extension of the algorithm to operate as a complete recognition system, the study of
specific applications and the incorporation of a color image processing feature.
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Figure 5: Galaxies’ gray scale images and their transforms.

| | NGC1365 a | NGC1365 b | NGC1365 c |

NGC1365 b 6.63 * *
NGC1365 ¢ 6.78 6.92 *
NGC3938 92.94 93.27 94.08

Table 2: This table shows the distance between the gray scale images of galaxies
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A Appendix

Let us call an N-sampled monodimensional function f : [a,b[— R, a function which is constant on
each subinterval (b—a) (b—a)
—a —a

This definition captures the abstraction of a digitized signal: the input function is a step function
in which a single sample value is constant until the next sampling point.

A.1 Proposition:

The magnitude of the Fourier transform of an N-sampled real non-negative monodimensional func-
tion f : [0, 27| is monotonic decreasing in the interval [0,1/4].
Proof: Let’s define y1,...,yn as:

w= 1 (a+7%) = £ (78).
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Then each sum term

is positive and monotonic decreasing on u. ®

Let’s also define an NxM-Sampled bidimensional function f : [a, b[X[c,d[— R, a function which is
constant on each square subset of its domain

(b;[a)k,a—i- (b;ra) (k+1)[x[c+ (d]\zrc)h,c—i- (d]\}c) (h+1)]

VkE=0..N —1and h =0.M — 1.

Ik:,h = [a +

A.2 Proposition:

The Norm of the Fourier transform of an NxN-Sampled real non-negative bidimensional function

[+ [0,27[x[0, 27| is monotonic decreasing if computed on the segments ¢¥' with ¢ = [0, g] and
7Y = 1.
Proof: Let’s define y1.1,%1,2,...,yn,N as:
2, 2m
= f(=k,—h
Yk,h f(N "N ),
then
N-1N-1
|]-"T{f(acy Z Z Yk ko € -5 uk1+vkz)
k1=0 ko=0
N—1N-1 9 2 N—1N-1 9 2
= Z Z Yky iy COS (W(Ukl + ka)) + Z Z Yk1 ks SIN (W(Ukl + ka)) =
k1=0 k=0 k1=0ko=0
N—1N—1 N—1 N-1 o
Z Z Z Z Yky ks Yhi,hy COS (N (uky +Uk2)> cos (N (uh1 + vh2)>
k1=0k2=0 h1=0 h2=0
N—1 N—-1

N-1 1 N-1 2t 2t
+ Z Z Yk1,k2 Yhi,ho sin (F uk1 + ’ng)) sin (N(Uhl + ’th)) =
k1=0 ko=0 h1=0 ho=0
N-1 1 1 N— 92

N—1 N— 1
Z Z Z Yk1,k2 Yhi,ha COS <_ h’l +U(k2 _h2))) =

k1=0ko=0h1=0 ho=0

2=1
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< Z Z Z Z Yk1,k2 Yhi,ho COS(27T(U+U))

k1=0 ko=0 h1=0 ho=0

The last inequality holds if |k; — h1| < N and |k2 — ho| < N.
If lu + v| < 1
27 (u + v)| < g

this is only true if ||(u,v)|| < %. |

In this case the monotony of this function descends from the sum terms monotony.

The segments t7' becames the segments [0, %[x{arctan Z—z} when the spectral space is converted
into polar co-ordinates. Then the vertical sum (continuous or discrete) and the vertical mean of the
spectral values in polar co-ordinates become monotonic decreasing functions in the interval [0, %[
Being

1 N2 27rk'

27k 2k
LPw(p) = Z LPy(p, =

1 N-1
_1 , ,
N =N I;)f’f{fw(w,y)}(e cos -, e sin )

and extending the definition to —oc as
LPw(—00) = FT{fw(z,y)}(0,0)

Let’s define the recognition factor Zy of an N x N-sampled bidimensional function fy
[0, 27[ %[0, 27] as:

__ IPw(log(R)) _ L5 FT{w(a, )} (4 cos %k, 2 sin %)
=W TP (o) NFT{fw (2, }0,0)

Zw is the mean of the FT values on N sampling along the circle of radius g divided by the value
of the FT at O (i.e. the total energy of the image).

The parameter 2y is well defined on any non-null image and depends on the energy of the visual
signal (size and contrast).

As we have already pointed out in paragraph 4, where 1S is the set of all the images to be processed

and Z = max Zw
Wels ’

2 LPy
YW € IS Jlpg € [—oo,log (%) [ such that W((_po)) =5

The value of py, which can be computed using a search algorithm, represents a size independent
starting point for the following processing steps of the algorithm.

It can also be said that that the algorithm correctly computes its transform by fixing a = value,
for all W images having a Zyy less than or equal to =.
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