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Abstract 
Prosodic prominence, a speech phenomenon by which some 
linguistic units are perceived as standing out from their 
environment, plays a very important role in human 
communication. In this paper we present a study on automatic 
prominence identification using Probabilistic Graphical 
Models, a family of Machine Learning Systems able to 
properly handle sequences of events. We tested the most 
promising members of such models on utterances selected 
from a manually annotated Italian speech corpus, obtaining 
very good recognition results crucially converging with the 
prominence detection responses provided by a pool of native 
speakers. 
Index Terms: prosody, prominence, probabilistic graphical 
models, prominence annotation. 

1. Introduction 
A fairly uncontroversial definition of prosodic prominence due 
to Terken [29: 1768] states: “prominence is the property by 
which linguistic units are perceived as standing out from their 
environment”. These prominent units typically contain 
relevant information for discourse and their correct perception 
is crucial for a successful communication strategy. Speakers 
use prominence to draw the listener’s attention on specific 
point of the utterance, to express their emotion or attitude 
about the topic being discussed, to indicate the focus of an 
utterance, to mark the introduction of new topics, to indicate 
the information status of a word (new or given), to change 
speaking style, etc. 
For all these reasons, the automatic management of prosodic 
prominence is crucial for both recognition and synthesis in 
order to build systems able to properly handle information in 
speech. 
There is a long-standing agreement among scholars to 
consider the syllable as the prominence-bearing unit in 
connected speech. This position is not uncontroversial, 
however, and various studies analyse prominence at word 
level, especially if they mainly concern information extraction 
from speech utterances. In this paper we will consider the 
syllable, and its constituent units, as the relevant domain for 
prominence computation. 
Several recent contributions handle prosodic prominence from 
a computational point of view, proposing different models 
(both Rule-Based and Machine Learning Systems - MLS) for 
the automatic detection of prominence in various languages, 
e.g. [2, 5, 11, 12, 15, 24, 25, 26]. Some of them are 
specifically devoted to Italian, or handle the identification of 
prosodic prominence in Italian among other languages [1, 8, 
17, 26]. 

In this paper we present a procedure for the identification of 
prosodic prominence in Italian in the framework of MLS, 
based on training procedures that extract data and models from 
annotated corpora. These systems only take acoustic features 
into consideration, such as nucleus / syllable duration, energy 
measures in the nuclei / syllables and analysis of specific pitch 
profiles in the utterance.  
Adopting the above reported definition [29], we consider 
prominence as a phenomenon establishing precise syntagmatic 
relations with respect to the neighbouring syllables. Its 
identification requires MLS able to properly model sequences 
of events, because the immediate context information, both in 
the feature sequence of the input and in the label sequence of 
the output, are crucial for the correct identification of syllable 
prominence. A syllable can be defined as prominent only by 
considering the relationships with other syllables, in line with 
the classical figure – ground contrast proposed by Gestalt 
psychology, rather than by considering it – and its features – in 
isolation. 
Probabilistic graphical models (PGM) represent a class of 
MLS that, taking advantage of discriminative stochastic 
models, can successfully handle recognition problems that 
heavily depend on sequences. PGM, in some of their various 
configurations / models, have been applied to the task at stake 
with encouraging results [8, 21]. Despite these findings, PGM 
and their complex family of model variations have not yet 
been extensively applied to this problem, especially 
considering hidden or latent dynamics detection in speech data 
and the possibility of extracting and using high order relations 
among the acoustic features. 

2. Probabilistic graphical models 
PGM are powerful frameworks for representation and 
inference in multivariate probability distribution. They use a 
graph-based representation as the basis for compactly 
encoding a complex distribution over a high-dimensional 
space representing the conditional dependence structure 
between random variables. 
In this paper we considered some of the most powerful and 
widespread discriminative models to identify prosodic 
prominence in continuous speech, as well as some recently 
presented new models. 
PGM consists of a large family of different methods that 
constrain the graph structure in specific ways. Conditional 
Random Fields (CRF - see [10, 22] for general introductions) 
are no doubt the most used PGM in various fields. However, 
most CRF models use linear functions to represent the 
relationships between input features and the classification 
output and a simple graph structure for the entire model. This 
way of coding relations presents severe limitations for real-
world applications, because: (a) in many cases the 

SP-7 Conference Programme

Campbell, Gibbon, and Hirst (eds.) Speech Prosody 7, 2014 285



relationships between inputs and outputs are complex and 
nonlinear, and (b) some problems require modelling relevant 
sub-structures in the label sequence. 
In this work we used different PGM, each addressing in its 
own way the shortcomings of CRF models, considered as a 
baseline. Conditional Neural Fields (CNF) [20], inserting a 
small neural network between input and output, are able to 
capture the nonlinearities required by constraint (a) above; 
Latent-Dynamic Conditional Random Fields (LDCRF) [18], 
in turn, can learn latent sub-structures in output class labels. 
Latent-Dynamic Conditional Neural Fields (LDCNF) [16] can 
combine the advantages of both previous approaches in a 
single model. 
PGM are able to manage sequences of input-output data 
predicting the output sequence considering both the input 
feature configuration, in a specific window centered on the 
generic input vector of features xj, and the previous output 
sequence. Figure 1 outlines the different structures of the PGM 
used in this work.  
Given the input sequence of local features x1,…,xn, typically 
consisting of vectors of features, and given the output 
sequence y1,…,yn, linear CRF assign the most likely label to 
output yj conditioned by the feature vectors belonging to the 
local window and the previous output label yj-1. 
CNF extends CRF by adding one level of gate units, acting as 
a neuron tier (more precisely a perceptron), between the input 
and the output layers. These gate neurons are a sort of feature 
extractor able to capture nonlinear relationships between input 
and output. 
A further, completely different way of extending CRF is 
implemented in LDCRF adding a layer of hidden-state units 
between input and output layers: these units are able to model 
the sub-structure of the label sequence and can learn complex 
dynamic behaviours between output labels. 
Finally, LDCNF take advantage from both approaches, 
combining them in a unique structure. The LDCRF model is 
modified by adding the neural network introduced in CNF 
between input and hidden units; in this way, LDCNF models 
can both identify sub-structures in the output sequence and 
learn nonlinear relationships between input feature vectors and 
output class labels. 
For lack of space, we refer to the cited papers for all 
mathematical and algorithmic details that define these 
approaches, especially for what concerns the learning 
algorithms, inference and parameter setting. 

3. Corpus building and data collection 
The materials used in this study were utterances extracted 
from the API/AVIP corpus [3] and from a selection of 
sentences read by a subset of the same speakers. The corpus 
consisted of semi-spontaneous conversations between native 
Italian speakers elicited with the map-task method for different 
Italian language varieties. The speakers used for the present 
purpose were from the Pisa area (central Italy).  
The selected utterances presented a neutral intonation contour, 
without emphatic stress or pauses, and presenting at least 8 
syllables. Care was taken to avoid any disturbing phenomena 
such as speakers’ overlap, laughters, background noise, etc.  
A perception experiment, divided into two different sessions 
(sets A-C vs D-G in table 1), was carried out using 120 
selected corpus utterances (90 spontaneous and 30 read), 
produced by female and male speakers. The average utterance 
length was 18 syllables, ranging from 9 to 35. The task was 
performed by 35 Italian native speakers. 

 
Figure 1. The various PGM considered in this study. 
The gate units !1…!g are in gray while the hidden 
units h1…hn present a thick border. For clarity, only 
the region of the model net surrounding the generic 
input feature vector xj is represented in the pictures.  

 

Table 1: The latin square scheme applied to the 120 
utterances composing the corpus. 

Utterance 
Sub-list 

Annotators IDs 

A (20 utt.) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
B (20 utt.) 1, 2, 3, 4, 5, 11, 12, 13, 14, 15 
C (20 utt.) 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 
D (15 utt.) 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 
E (15 utt.) 16, 17, 18, 19, 20, 26, 27, 28, 29, 30 
F (15 utt.) 31, 32, 33, 34, 35, 21, 22, 23, 24, 25 
G (15 utt.) 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 

 
The experimental task was to identify the sentence 
prominences. The participants could listen to each sentence as 
many time as they wanted. To reduce the task difficulty, 
participants were presented with a transcription of the given 
sentence whereby each syllable (as the possible prominence-
carrying unit) was separately indicated; in addition, the 
lexically stressed syllables were explicitly pointed out. 
However, participants were warned during the training phase 
that not all lexically stressed syllables were actual targets of 
sentence prominence, while prominence could also land on 
lexically unstressed syllables. As soon as the participant had 
made her/his own choice by clicking on the square 
corresponding to the intended syllables, s/he was immediately 
presented with another sentence.  
Since this task is very demanding in terms of attention, the 
sentences were divided into sub-lists according to a latin 
square scheme, so that each utterance was judged by 10 
speakers. As a consequence, no participant heard/read all the 
sentences. Table 1 depicts the annotation scheme: the total 
number of utterances was divided into seven sub-lists each 
assigned to 10 annotators. 
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For each test utterance extracted from the AVIP corpus, the 
phonetic transcription and the phoneme level segmentation 
were available in the source. The selected utterances were 
further segmented manually in order to identify the syllable 
boundaries. 

3.1. First-step: data annotation and overall judgment 
convergence 

As a first step, the participants judgments were pooled 
together and evaluated with respect to the degree of 
convergence relative to the identification of any given syllable 
as prominent. The convergence level was assessed with 
respect to four criteria (60%, 70%, 80% and 90%), indicating 
the percentage of shared prominence identification. In 
practice, considering that each sentence was judged by 10 
participants, the 60% criterion implied the convergence of 6 
out of 10 listeners (and similarly for the other levels).  
Needless to say, the 90% agreement level involves a smaller 
number of prominent syllables within any given sentence, 
since almost all participants have to agree on their judgment 
concerning the given syllable. By contrast, the more generous 
60% level concerns a larger number of syllables. Interestingly, 
there was full agreement as for the last prominence of each 
sentence, evidently due to unequivocal durational cues, 
although the energy and frequency levels at the end of an 
utterance are usually fairly low. 
As is well known, while the identification of emphatic 
prominences is undisputable, there usually is considerable 
divergence among human judges on the identification of non-
emphatic prominences. As a consequence, the 80% level was 
selected as bench-mark for the automatic detection of 
prominences as a first approximation. The dataset contains 480 
prominent syllables out of 2037, thus close to one prominent 
syllable out of four (23.56%). 

3.2. Second-step: best annotators selection 

Capitalizing on the well-known lack of overwhelming 
convergence among human judges as for the localization of 
sentence prominences, a second type of comparison between 
the automatic detector and the human judges was adopted. For 
each of the two sub-lists of utterances, the three most reliable 
judges were selected, i.e. the three participants presenting the 
highest level of mutual agreement according to the Fleiss K 
index (this schema will be referred to as the “best-3” 
annotation agreement). Subsequently, the syllables judged as 
prominent by the majority of the “best-3” were considered 
prominent. The correlation data are reported in Table 2. In this 
dataset, 33.46% of the syllables are prominent (one out of 
three). 

4. Acoustic features 
The acoustic features used in this study are the same used in 
some previous studies of one of the authors [25, 26]. These 
works proposed a rule-based system resting on four acoustic 
features that exhibited good performances in prominence 
detection. One of the major challenges in predicting syllable 
prominence is the correct identification of the various sources 
of influence, such as: fundamental frequency excursions, 
duration, intensity-related parameters and listeners’ linguistic 
expectancies.  
The automatic prominence detection system described in [25, 
26] is based on the global prominence model proposed by 

Kohler [13, 14]. In his view, there are two main ‘actors’, at the 
linguistic-prosodic level, playing a relevant role in supporting 
sentence prominence. The first, pitch accent, coincides with a 
concept first introduced by Bolinger [4] and concerns specific 
movements in F0 profile. The second, force accent, is 
completely independent from the intonational profile and is 
connected with different acoustic phenomena, such as 
intensity (or spectral emphasis), segmental durations and 
possibly others. Both ‘actors’ seem to play a relevant role in 
supporting prominence perception at utterance level, mutually 
reinforcing each other. 

Table 2: The “best-3” annotators for each utterance  
sub-list. 

Utterance 
Sub-list 

Best 3 annotators Fleiss-K 

A 2, 3, 6 0.875631 
B 1, 2, 13 0.876340 
C 6, 9, 13 0.859735 
D 16, 18, 20 0.836450 
E 16, 19, 20 0.857646 
F 31, 33, 25 0.863555 
G 31, 33, 34 0.812559 

 
In the present study, we considered the four features used in 
the cited work (reported in Table 3 with brief reference to their 
actual computation) and added one further acoustic feature, 
namely syllable duration, following the good results obtained 
in [8]. All these features, except syllable duration, are 
computed within the syllable nucleus domain. Thus, using the 
phonetic and syllabic segmentation provided in the source 
corpus, all we had to do was to define the duration of the 
syllabic nuclei, deriving it automatically from the other two 
measures. 

5. Results and discussion 
We made a number of experiments, considering various PGM 
and different parameter configurations in order to maximize 
the agreement between the automatic procedure and the 
human annotators. We tested the best system on the above-
described corpus, applying a random sub-sampling validation 
to define the training and test set (respecting a 5/1 proportion, 
100/20 utterances), repeating this procedure 20 times and 
averaging the obtained results.  
The best performances so far obtained, in comparing the 
automatic classifications with the gold standard, are depicted 
in Table 4 and 5. The first table refers to the “80%” level of 
annotation agreement described in section 3.1, the second 
refers to the “best-3” agreement described in section 3.2. 
There is a clear performance improvement considering the 
“best-3” annotation schema: the larger inter-human agreement 
produces a more consistent annotation and, thus, better 
performances of the MLS trained on these data. 
The accuracy obtained by our automatic systems is very high, 
considering that the typical inter-human agreement accuracy 
reported in the literature, when annotating prominence by 
means of two levels (prominent vs non-prominent) is in the 
range 70-90%. 
However, considering that the distribution between the two 
prominence classes is rather skewed, one should best adopt the 

SP-7 Conference Programme

Campbell, Gibbon, and Hirst (eds.) Speech Prosody 7, 2014 287



F-measure as a more reliable metric of the actual system 
performance. An F-measure of 0.770 is quite high, considering 
that: 
 
a) The training corpus used to set up the model, in the 

various permutations composing the 20-random-sub-
sampling validation, is rather small to properly train a 
MLS, as it only contains 100 utterances (1800 syllable, on 
average); 

b) We only used acoustic information and did not consider 
any linguistic feature that might improve the system’s 
behaviour, as showed, for example, by [21]. 
 

Table 3. Acoustic features used to set up the PGM 
models for prominence identification. 

Acoustic Feature Description 
Nucleus Duration Duration of the syllable nucleus 

normalised w.r.t. mean and variance 
duration of the syllable nuclei in the 
utterance (z-score), as based on the 
manual segmentation available in the 
database. 

Spectral emphasis Normalised SPLH-SPL parameter [9] 
(z-score). 

Pitch movements Computed as the product of Aevent and 
Devent parameters of the TILT model 
representation [28] of pitch movements. 
The raw pitch contour is the median of 
three pitch tracking algorithms [27]: 
RAPT [23], SWIPE’ [6] and YAAPT 
[31]. The raw pitch profile was stylised 
by using a quadratic spline function, 
interpolating the control points derived 
from the OpS algorithm proposed in 
[19]. 

Overall intensity RMS energy computed in the frequency 
band 50-5000 Hz, normalised to mean 
and variance of intensity inside the 
utterance (z-score). 

Syllable Duration The same as the nucleus duration but 
referred to the entire syllable. 

 

Table 4. Results obtained by the PGM tested, in terms 
of Accuracy, Precision & Recall and F-Measure, as 
referred to the 80% level of annotation agreement 
described in section 3.1. The parameters considered 
with the various PGM are: w – local window size 
(symmetric), h – number of hidden units, g – number 
of gate neurons and ! – regularization factor. 

Model Parameters Results 
Acc. Prec. Rec. F 

SVM w=2, C=0.5 0.858 0.765 0.592 0.665 
CRF w=1 0.856 0.735 0.609 0.665 
LDCRF 
[18] 

w=1, h=2 0.856 0.720 0.640 0.676 

CNF [16] w=2, g=40 
!=0.5 

0.871 0.784 0.642 0.705 

CNF [20] w=1, g=20 0.872 0.769 0.667 0.713 
LDCNF 
[16] 

w=1, h=4, 
g=40, !=0.5 

0.875 0.788 0.658 0.716 

Table 5. Results obtained by the PGM tested, as 
referred to the “best-3” level of annotation agreement 
described in section 3.2. The parameters are described 
in the caption  of Table 4. 

Model Parameters Results 
Acc. Prec. Rec. F 

SVM w=1, C=50 0.833 0.791 0.681 0.732 
CRF w=2 0.838 0.795 0.695 0.741 
LDCRF 
[18] 

w=1, h=2 0.842 0.792 0.713 0.750 

CNF [16] w=1, g=20 
!=0.5 

0.845 0.803 0.712 0.754 

LDCNF 
[16] 

w=1, h=4, 
g=20, !=0.5 

0.851 0.823 0.706 0.759 

CNF [20] w=1, g=20 0.855 0.831 0.718 0.770 
 
Our results cannot be directly compared with other similar 
studies, because there are no standard corpora for evaluation, 
both in general and for Italian in particular, nor specific 
standardised metrics. In any case, it is worth observing that the 
best-obtained results are equivalent or better than those of the 
already cited studies (e.g. [8, 15, 17]). 
The best PGM for the problem at hand seems to be CNF in the 
implementation proposed by [20]. LDCNF and CNF from [16] 
obtained slightly lower performances, especially using the 
“best-3” annotation schema. This is probably due to the small 
set of utterances used to train these models, since while 
performing some other tests not reported here, using more 
utterances and a different corpus, LDCNF performed best. 
In order to compare the PGM results with standard non-
sequential MLS, we included in our experiments the results 
obtained using classical Support Vector Machines (SVM). All 
PGM exhibit significant performance improvements when 
compared with SVM, confirming their superiority when 
applied to intrinsically sequential problems. 

6. Conclusion 
This paper presents some experiments on the automatic 
detection of prosodic prominence in continuous Italian speech. 
Considering that in order to properly define prosodic 
prominence one needs to take contextual information into 
account, we tested a number of versions of MLS, able to 
correctly manage problems involving sequences of input 
features and sequences of output label classes, to be related in 
a complex way. In particular, we tested MLS belonging to the 
large family of PGM. 
We thus performed several experiments with CRF, CNF, 
LDCRF and LDCNF models, obtaining very good 
classification results (F-measure = 0.770) despite using a small 
Italian corpus consisting of only 120 utterances. 
Considering that, as outlined by [7, 30], prominence 
perception is highly influenced by the listener’s linguistic 
expectations, there is room for large improvements in the 
system’s performance by including linguistic features in the 
automatic system. 
We are planning to test these models on different corpora and 
different languages, in order to verify the effectiveness of the 
proposed approach to automatic prominence detection. 
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